Structure Reports

Online
ISSN 1600-5368

2,6-Dichloropyridine-3,5-dicarbonitrile

Adrian Woiczechowski-Pop, ${ }^{\text {a }}$ * Richard A. Varga, ${ }^{\text {b }}$ Anamaria Terec ${ }^{\mathbf{a}}$ and Ion Grosu ${ }^{\text {a }}$
${ }^{\text {a }}$ Organic Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, Arany Janos 11, 400028, Cluj Napoca, Romania, and ${ }^{\mathbf{b}}$ Inorganic Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, Arany Janos 11, 400028, Cluj Napoca, Romania Correspondence e-mail: wadrian@chem.ubbcluj.ro

Received 11 August 2010; accepted 20 September 2010
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.067 ; w R$ factor $=0.133$; data-to-parameter ratio $=13.0$.

In the crystal, essentially planar (r.m.s. deviation $=0.003 \AA$) molecules of the title compound, $\mathrm{C}_{7} \mathrm{HCl}_{2} \mathrm{~N}_{3}$, form chains along the b axis by means of $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions. These chains are further linked into layers parallel to the $a b$ plane by $\mathrm{C}-$ $\mathrm{Cl} \cdots \mathrm{N}$ interactions.

Related literature

For the structures of related pyridine derivatives, see: Boer et al. (1972); Clegg et al. (1997); Julia et al. (1983); Schlosser et al. (2006); Schmidt et al. (2005); Smith et al. (2008). For more information on the synthesis of 2,6-dichloropyridine-3,5dicarbonitrile, see: Duindam et al. (1993). For compounds obtained from 2,6-dichloropyridine-3,5-dicarbonitrile, see: Katz et al. (2005); Vilarelle et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{HCl}_{2} \mathrm{~N}_{3}$
$M_{r}=198.01$
Orthorhombic, Pbca
$a=6.8473$ (9) £
$b=12.1307$ (15) \AA
$c=19.430$ (3) A

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.751, T_{\text {max }}=0.761$
$V=1613.9(4) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
$0.41 \times 0.39 \times 0.39 \mathrm{~mm}$

10614 measured reflections
1420 independent reflections
1328 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.049$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067 \quad 109$ parameters
$w R\left(F^{2}\right)=0.133 \quad$ H-atom parameters constrained
$S=1.29$
1420 reflections
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3}$

Table 1
Intermolecular interactions $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-X \cdots A$	$D-X$	$X \cdots A$	$D \cdots A$	$D-X \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\text {i }}$	0.93	2.54	3.412 (5)	157
$\mathrm{C} 1-\mathrm{Cl} 1 \cdots \mathrm{~N} 2^{\text {ii }}$	1.71 (1)	3.24 (1)	4.820 (5)	152 (1)
$\mathrm{C} 5-\mathrm{Cl} 2 \cdots \mathrm{~N} 3^{\text {iii }}$	1.72 (1)	3.28 (1)	4.851 (6)	151 (1)

Data collection: SMART (Bruker, 2000); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the National University Research Council of Romania (CNCSIS-UEFISCSU); project number PNII-IDEI 570/2007. We thank Dr Ciprian Rat for helpful disussions and advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2129).

References

Boer, F. P., Turley, J. W. \& Van Remoortere, F. P. (1972). Chem. Commun. pp. 573-574.
Brandenburg, K. \& Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Clegg, W., Elsegood, M. R. J., Jackson, R. F. W., Fraser, J. L. \& Emsden, L. J. (1997). Acta Cryst. C53, 797-799.

Duindam, A., Lishinsky, V. L. \& Sikkema, D. J. (1993). Synth. Commun. 23, 2605-2609.
Julia, L., Suschitzky, H., Barnes, J. C. \& Tomlin, C. D. S. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2507-2511.
Katz, J. L., Selby, K. J. \& Conry, R. R. (2005). Org. Lett. 7, 3505-3507.
Schlosser, M., Heiss, C., Marzi, E. \& Scopelliti, R. (2006). Eur. J. Org. Chem. pp. 4398-4404.
Schmidt, A., Mordhorst, T. \& Nieger, M. (2005). Org. Biomol. Chem. 3, 37883793.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smith, A. E., Clapham, K. M., Batsanov, A. S., Bryce, M. R. \& Tarbit, B. (2008). Eur. J. Org. Chem. pp. 1458-1463.

Vilarelle, D. V., Veira, C. P. \& Quintela Lopez, J. M. (2004). Tetrahedron, 60, 275-283.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

2,6-Dichloropyridine-3,5-dicarbonitrile

A. Woiczechowski-Pop, R. A. Varga, A. Terec and I. Grosu

Comment

Some pyridine derivatives are known to be important intermediates in pharmaceutical and medicinal chemistry. They can be used for the synthesis of various compounds having antibacterial, antianaphilactic, antipyretic, antiallergic or anticancer properties (Vilarelle et al., 2004). Lately, pyridine derivatives were used in the synthesis of cage molecules, supramolecular structures which are important as tools for the study of molecular encapsulation and host-guest interactions (Katz et al., 2005).

Relatively few crystal structures of pyridines substituted in positions 2 and 6 with chlorine atoms were published (Boer et al., 1972; Clegg et al., 1997; Julia et al., 1983; Schlosser et al., 2006; Schmidt et al., 2005; Smith et al., 2008). The synthesis of the title compound has been reported some years ago (Duindam et al., 1993), however its crystal structure has not yet been determined, even though electron withdrawing CN groups, causing considerable acidity of the H atom in position 4 , as well as chlorine substituents at the pyridine atoms adjacent to the endocyclic N atom, may give rise to important non-conventional intermolecular interactions. Therefore, one may expect that structural study of the title compound may provide some non-trivial information.

Molecule of the title compound (Fig. 1) is essentially planar; the N2 and N3 atoms deviate from the pyridine plane by 0.060 (4) \AA and 0.026 (4) \AA respectively.

The molecules are linked by means of $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{i}}$ ineractions (Table 1) into infinite chains running along the b axis. The pyridine rings in the adjacent molecules of these chains are not coplanar, but rather form substantial dihedral angle with one another $\left[56.5(1)^{\circ}\right]$. The chains are further linked via $\mathrm{C} 1-\mathrm{Cl} 1 \cdots \mathrm{~N} 2{ }^{\mathrm{ii}}$ and $\mathrm{C} 5-\mathrm{Cl} 2 \cdots \mathrm{~N} 3{ }^{\mathrm{iii}}$ interactions into layers parallel to the $a b$-plane (Table 1; Fig. 2).

Experimental

A mixture of malononitrile ($5 \mathrm{~g}, 75.69 \mathrm{mmol}, 2$ equiv.), triethyl orthoformate ($5.61 \mathrm{~g}, 37.84 \mathrm{mmol}, 1$ equiv.) and pyridine $\left(2.99 \mathrm{~g}, 37.84 \mathrm{mmol}, 1\right.$ equiv.) was allowed to reflux for 20 minutes, then concentrated HCl was added at $80^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and water $(20 \mathrm{ml})$ was added. The formed precipitate was collected by filtration, washed successively with water, ethanol and diethylether to afford the intermediate 2 -amino- 6 -chloropyridine-3,5-dicarbonitrile $(9.74 \mathrm{~g}, 96 \%)$. To a solution of 2-amino-6-chloropyridine-3,5-dicarbonitrile ($3 \mathrm{~g}, 16.8 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CuCl}_{2}(3.39 \mathrm{~g}$, 25.2 mmol , 1.5 equiv.) in dry $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{ml})$, isopentyl nitrite was added ($2.95 \mathrm{~g}, 25.2 \mathrm{mmol}, 1.5$ equiv.). The mixture was heated at $65^{\circ} \mathrm{C}$ for 5 h . The solution was acidified $(\mathrm{HCl}, 2 \mathrm{~N})$ to $\mathrm{pH}=3$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to yield 2,6-dichloropyridine-3,5-dicarbonitrile as a colourless solid ($2.97 \mathrm{~g}, 89 \%$). The crystals were obtained by slow evaporation of the solvent from solution of the title compound in dichloromethane.

supplementary materials

Refinement

The H3 atom was placed in calculated position $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and treated in the subsequent refinement using the riding model approximation with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. Molecular structure of the title compound; displacement ellipsoids are drawn at the 50% probability level, and the H 3 atom is shown as a circle of arbitrary small radius.

Fig. 2. Packing diagram for the crystal of the title compound viewed down the b axis. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{Cl} \cdots \mathrm{N}$ interactions are shown as dashed lines.

2,6-Dichloropyridine-3,5-dicarbonitrile

Crystal data

$\mathrm{C}_{7} \mathrm{HCl}_{2} \mathrm{~N}_{3}$
$M_{r}=198.01$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=6.8473$ (9) \AA
$b=12.1307$ (15) \AA
$c=19.430(3) \AA$
$V=1613.9(4) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& F(000)=784 \\
& D_{\mathrm{x}}=1.630 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4078 \text { reflections } \\
& \theta=3.1-26.1^{\circ} \\
& \mu=0.74 \mathrm{~mm}^{-1} \\
& T=297 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.41 \times 0.39 \times 0.39 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.751, T_{\text {max }}=0.761$
10614 measured reflections

1420 independent reflections
1328 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.133$
$S=1.29$

1420 reflections
109 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0317 P)^{2}+2.8365 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.9151(5)$	$0.3589(3)$	$0.4007(2)$	$0.0375(9)$
C2	$0.8734(5)$	$0.2479(3)$	$0.40946(19)$	$0.0364(9)$
C3	$0.7015(5)$	$0.2084(3)$	$0.38179(18)$	$0.0368(9)$
H3	0.6687	0.1343	0.3861	$0.044 *$
C4	$0.5791(5)$	$0.2801(3)$	$0.34764(18)$	$0.0332(8)$
C5	$0.6383(6)$	$0.3884(3)$	$0.34168(19)$	$0.0390(9)$
C6	$1.0034(6)$	$0.1770(4)$	$0.4467(2)$	$0.0474(10)$
C7	$0.3992(6)$	$0.2425(3)$	$0.3184(2)$	$0.0438(10)$
C11	$1.12351(16)$	$0.41416(10)$	$0.43512(6)$	$0.0578(4)$
C12	$0.49486(18)$	$0.48205(10)$	$0.29881(6)$	$0.0604(4)$
N1	$0.8014(5)$	$0.4280(3)$	$0.36795(16)$	$0.0404(8)$
N2	$1.1049(6)$	$0.1222(3)$	$0.4775(2)$	$0.0683(12)$
N3	$0.2550(6)$	$0.2128(4)$	$0.29590(19)$	$0.0630(11)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C 1	$0.033(2)$	$0.040(2)$	$0.039(2)$	$-0.0043(18)$	$0.0058(17)$	$-0.0067(17)$

C2	$0.035(2)$	$0.0368(19)$	$0.0372(19)$	$0.0031(18)$	$-0.0002(16)$	$-0.0039(17)$
C3	$0.042(2)$	$0.0271(18)$	$0.041(2)$	$-0.0021(17)$	$0.0037(18)$	$-0.0046(16)$
C4	$0.0343(19)$	$0.0314(19)$	$0.0339(19)$	$0.0003(16)$	$0.0020(16)$	$-0.0033(15)$
C5	$0.041(2)$	$0.037(2)$	$0.039(2)$	$0.0048(18)$	$0.0058(18)$	$0.0025(17)$
C6	$0.048(2)$	$0.047(2)$	$0.048(2)$	$0.003(2)$	$-0.003(2)$	$-0.009(2)$
C7	$0.048(2)$	$0.041(2)$	$0.042(2)$	$-0.001(2)$	$-0.003(2)$	$-0.0012(18)$
C11	$0.0412(6)$	$0.0622(7)$	$0.0699(8)$	$-0.0128(5)$	$-0.0045(5)$	$-0.0138(6)$
C12	$0.0611(7)$	$0.0487(6)$	$0.0714(8)$	$0.0081(6)$	$-0.0105(6)$	$0.0191(5)$
N1	$0.0417(19)$	$0.0334(17)$	$0.0461(19)$	$-0.0030(15)$	$0.0061(16)$	$-0.0011(15)$
N2	$0.067(3)$	$0.064(3)$	$0.074(3)$	$0.025(2)$	$-0.020(2)$	$-0.007(2)$
N3	$0.054(2)$	$0.075(3)$	$0.060(2)$	$-0.014(2)$	$-0.013(2)$	$0.002(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.309(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(5)$
$\mathrm{C} 1-\mathrm{Cl} 1$	$1.713(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.380(5)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.434(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.378(5)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.0(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl} 1$	$115.8(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$120.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.7(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$121.2(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$121.1(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.1(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.1(6)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$-179.2(4)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$-0.6(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.6(5)$
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.7(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.4(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$-179.8(3)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.380(5)$
$\mathrm{C} 4-\mathrm{C} 7$	$1.430(5)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.319(5)$
$\mathrm{C} 5-\mathrm{Cl} 2$	$1.717(4)$
$\mathrm{C} 6-\mathrm{N} 2$	$1.133(5)$
$\mathrm{C} 7-\mathrm{N} 3$	$1.139(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$120.9(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$121.6(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$124.3(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{Cl} 2$	$115.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	$120.2(3)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 2$	$178.4(5)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 4$	$179.2(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$117.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-1.8(6)$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$179.4(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	$179.1(3)$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	$0.3(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-0.3(6)$
$\mathrm{Cl} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-179.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$1.2(6)$
$\mathrm{C} 12-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$-179.6(3)$

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.54	$3.412(5)$	157
$\mathrm{C} 1 — \mathrm{Cl} 1 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$1.713(4)$	$3.241(4)$	$4.820(5)$	$151.9(2)$
$\mathrm{C} 5-\mathrm{Cl} 2 \cdots \mathrm{~N} 3^{\mathrm{iii}}$	$1.717(4)$	$3.281(5)$	$4.851(6)$	$150.6(2)$

Symmetry codes: (i) $-x+3 / 2, y-1 / 2, z$; (ii) $-x+5 / 2, y+1 / 2, z$; (iii) $-x+1 / 2, y+1 / 2, z$.

Fig. 1

supplementary materials

Fig. 2

